Small RNAseq: Differential Expression Analysis
Environment Setup
salloc -N 1 --exclusive -p amd -t 8:00:00
conda env create -f conda-env.yml
conda activate smallrnaDownloading datasets
Raw data
Raw data was downloaded from the sequencing facility using the secure
link, with wget command. The downloaded files were checked
for md5sum and compared against list of files expected as per the input
samples provided.
wget https://oc1.rnet.missouri.edu/xyxz
# link masked
# GEO link will be included later
# merge files of same samples (technical replicates)
paste <(ls *_L001_R1_001.fastq.gz) <(ls *_L002_R1_001.fastq.gz) | \
sed 's/\t/ /g' |\
awk '{print "cat",$1,$2" > "$1}' |\
sed 's/_L001_R1_001.fastq.gz/.fq.gz/2' > concatenate.sh
chmod +x concatenate.sh
sh concatenate.shGenome/annotation
Additional files required for the analyses were downloaded from GenCode. The downloaded files are as follows:
wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M30/GRCm39.primary_assembly.genome.fa.gz
wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M30/gencode.vM30.annotation.gff3.gz
wget https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_mouse/release_M30/gencode.vM30.annotation.gtf.gz
gunzip GRCm39.primary_assembly.genome.fa.gz
gunzip gencode.vM30.annotation.gff3.gz
gunzip gencode.vM30.annotation.gtf.gzFastQC (before processing)
for fq in *.fq.gz; do
fastqc --threads $SLURM_JOB_CPUS_PER_NODE $fq;
done
mkdir -p fastqc_pre
mv *.zip *.html fastqc_pre/Mapping
To index the genome, following command was run (in an interactive session).
fastaGenome="GRCm39.genome.fa"
gtf="gencode.vM30.annotation.gtf"
STAR --runThreadN $SLURM_JOB_CPUS_PER_NODE \
--runMode genomeGenerate \
--genomeDir $(pwd) \
--genomeFastaFiles $fastaGenome \
--sjdbGTFfile $gtf \
--sjdbOverhang 1Each fastq file was mapped to the indexed genome as
using runSTAR_map.sh script shown below:
#!/bin/bash
read1=$1
out=$(basename ${read1%%.*})
STARgenomeDir=$(pwd)
# illumina adapter
adapterseq="AGATCGGAAGAGC"
STAR \
--genomeDir ${STARgenomeDir} \
--readFilesIn ${read1} \
--outSAMunmapped Within \
--readFilesCommand zcat \
--outSAMtype BAM SortedByCoordinate \
--quantMode GeneCounts \
--outFilterMultimapNmax 20 \
--clip3pAdapterSeq ${adapterseq} \
--clip3pAdapterMMp 0.1 \
--outFilterMismatchNoverLmax 0.03 \
--outFilterScoreMinOverLread 0 \
--outFilterMatchNminOverLread 0 \
--outFilterMatchNmin 16 \
--outFileNamePrefix ${out} \
--alignSJDBoverhangMin 1000 \
--alignIntronMax 1 \
--runThreadN ${SLURM_JOB_CPUS_PER_NODE} \
--genomeLoad LoadAndKeep \
--limitBAMsortRAM 30000000000 \
--outSAMheaderHD "@HD VN:1.4 SO:coordinate"Mapping was run with a simple loop:
for fq in *.fq.gz; do
runSTAR_map.sh $fq;
doneCounting Stats
Counts generated by STAR with option
--quantMode GeneCounts were parsed to generate summary
stats as well as to extract annotated small RNA feature counts.
mkdir -p counts_files
# copy counts for each sample
cp *ReadsPerGene.out.tab counts_files/
cd counts_files
# merge counts
join_files.sh *ReadsPerGene.out.tab |\
sed 's/ReadsPerGene.out.tab//g' |\
grep -v "^N_" > counts_star.tsv
# merge stats
join_files.sh *ReadsPerGene.out.tab |\
sed 's/ReadsPerGene.out.tab//g' |\
head -n 1 > summary_star.tsv
join_files.sh *ReadsPerGene.out.tab |\
sed 's/ReadsPerGene.out.tab//g' |\
grep "^N_" >> summary_star.tsv
# parse GTF to extact gene.id and its biotype:
gtf=gencode.vM30.annotation.gtf
awk 'BEGIN{OFS=FS="\t"} $3=="gene" {split($9,a,";"); print a[1],a[2]}' ${gtf} |\
awk '{print $4"\t"$2}' |\
sed 's/"//g' > GeneType_GeneID.tsv
cut -f 1 GeneType_GeneID.tsv | sort |uniq > features.txtThe information for biotype as provided by the gencodegenes
were used for categorizing biotype.
The smallRNA group consists of following
biotype:
miRNA
misc_RNA
scRNA
snRNA
snoRNA
sRNA
scaRNA
The full table is as follows:
library(knitr)
setwd("/work/LAS/geetu-lab/arnstrm/mouse.trophoblast.smallRNAseq")
file1="assets/GeneType_Group.tsv"
info <-
read.csv(
file1,
header = TRUE,
sep = "\t",
stringsAsFactors = TRUE
)
kable(info, caption = "Table 1: biotype and its groupings")| biotype | group |
|---|---|
| protein_coding | coding_genes |
| pseudogene | pseudogenes |
| TR_C_gene | Ig_genes |
| TR_D_gene | Ig_genes |
| TR_J_gene | Ig_genes |
| TR_V_gene | Ig_genes |
| IG_C_gene | Ig_genes |
| IG_D_gene | Ig_genes |
| IG_J_gene | Ig_genes |
| IG_LV_gene | Ig_genes |
| IG_V_gene | Ig_genes |
| TR_J_pseudogene | pseudogenes |
| TR_V_pseudogene | pseudogenes |
| IG_C_pseudogene | pseudogenes |
| IG_D_pseudogene | pseudogenes |
| IG_pseudogene | pseudogenes |
| IG_V_pseudogene | pseudogenes |
| lncRNA | long_non_conding_RNA |
| miRNA | non_conding_RNA |
| misc_RNA | non_conding_RNA |
| ribozyme | non_conding_RNA |
| rRNA | non_conding_RNA |
| scaRNA | non_conding_RNA |
| scRNA | non_conding_RNA |
| snoRNA | non_conding_RNA |
| snRNA | non_conding_RNA |
| sRNA | non_conding_RNA |
| Mt_rRNA | non_conding_RNA |
| Mt_tRNA | non_conding_RNA |
| processed_pseudogene | pseudogenes |
| unprocessed_pseudogene | pseudogenes |
| translated_unprocessed_pseudogene | pseudogenes |
| transcribed_processed_pseudogene | pseudogenes |
| transcribed_unitary_pseudogene | pseudogenes |
| transcribed_unprocessed_pseudogene | pseudogenes |
| unitary_pseudogene | pseudogenes |
| TEC | unconfirmed_genes |
A samples table (samples.tsv) categorizing samples to
its condition were also generated:
file2="assets/samples.tsv"
samples <-
read.csv(
file2,
header = TRUE,
sep = "\t",
stringsAsFactors = TRUE
)
kable(samples, caption = "Table 2: Samples in the study")| Sample | Group |
|---|---|
| pTGC_1 | pTGC |
| pTGC_2 | pTGC |
| pTGC_3 | pTGC |
| pTGC_4 | pTGC |
| mTSC_1 | mTSC |
| mTSC_2 | mTSC |
| mTSC_3 | mTSC |
| mTSC_4 | mTSC |
This information was then merged withe counts table to generate QC plots:
awk 'BEGIN{OFS=FS="\t"}FNR==NR{a[$1]=$2;next}{ print $2,$1,a[$1]}' \
GeneType_Group.tsv GeneType_GeneID.tsv > GeneID_GeneType_Group.tsv
awk 'BEGIN{OFS=FS="\t"}FNR==NR{a[$1]=$2"\t"$3;next}{print $1,a[$1],$0}' \
GeneID_GeneType_Group.tsv counts_star.tsv |\
cut -f 1-3,5- > processed_counts_star.tsvPlotting the mapping summary and count statistics for various biotypes:
library(scales)
library(tidyverse)
library(plotly)setwd("/work/LAS/geetu-lab/arnstrm/mouse.trophoblast.smallRNAseq")
file1="assets/processed_counts_star.tsv"
file2="assets/summary_stats_star.tsv"
counts <-
read.csv(
file1,
sep = "\t",
stringsAsFactors = TRUE
)
subread <-
read.csv(
file2,
sep = "\t",
stringsAsFactors = TRUE
)
# convert long format
counts.long <- gather(counts, Sample, Count, pTGC_1:mTSC_4, factor_key=TRUE)
subread.long <- gather(subread, Sample, Count, pTGC_1:mTSC_4, factor_key=TRUE)
# organize
counts.long$Group <-
factor(
counts.long$Group,
levels = c(
"coding_genes",
"non_conding_RNA",
"long_non_conding_RNA",
"pseudogenes",
"unconfirmed_genes",
"Ig_genes"
)
)
subread.long$Assignments <-
factor(
subread.long$Assignments,
levels = c(
"N_input",
"N_unmapped",
"N_multimapping",
"N_unique",
"N_ambiguous",
"N_noFeature"
)
)ggplot(subread.long, aes(x = Assignments, y = Count, fill = Assignments)) +
geom_bar(stat = 'identity') +
labs(x = "Subread assingments", y = "reads") + theme_minimal() +
scale_y_continuous(labels = label_comma()) +
scale_fill_manual(
values = c(
"N_input" = "#577b92",
"N_unmapped" = "#021927",
"N_multimapping" = "#007caa",
"N_unique" = "#1a3c54",
"N_ambiguous" = "#3a5b63",
"N_noFeature" = "#33526c"
)
) +
theme(
axis.text.x = element_text(
angle = 45,
vjust = 1,
hjust = 1,
size = 12
),
strip.text = element_text(
face = "bold",
color = "gray35",
hjust = 0,
size = 10
),
strip.background = element_rect(fill = "white", linetype = "blank"),
legend.position = "none"
) +
facet_wrap("Sample", scales = "free_y", ncol = 4)
Figure 1: STAR read mapping and feature assignment. Here,
N_input is total input reads, N_unmapped is
reads that were either too short to map after adapter removal or had
higher mismatch rate to place reliably on the genome,
N_multimapping is reads mapped to multiple loci,
N_unique is reads mapped to unique loci. A subset of
N_unique reads that were unable to clearly assign to a
feature or assign any feature at all are grouped as
N_ambigious or N_noFeature, respectively
g <- ggplot(counts.long, aes(x = Group, y = Count, fill = Group)) +
geom_bar(stat = 'sum') +
labs(x = "biotype", y = "read counts") + theme_minimal() +
scale_y_continuous(labels = label_comma()) +
scale_fill_manual(values = c(
"coding_genes" = "#92b5b7",
"non_conding_RNA" = "#be4f54",
"long_non_conding_RNA" = "#eca87a",
"pseudogenes" = "#784440",
"unconfirmed_genes" = "#eba3a4",
"Ig_genes" = "#8a3a1b"
)) +
theme(
axis.text.x = element_text(
angle = 45,
vjust = 1,
hjust = 1,
size = 12
),
strip.text = element_text(
face = "bold",
color = "gray35",
hjust = 0,
size = 10
),
strip.background = element_rect(fill = "white", linetype = "blank"),
legend.position = "none"
) +
facet_wrap("Sample", scales = "free_y", ncol = 4)
gFigure 2: Features with read counts
counts.nc <- filter(counts.long, Group %in% "non_conding_RNA" )
counts.nc$GeneType <-
factor(
counts.nc$GeneType,
levels = c(
"miRNA",
"misc_RNA",
"snoRNA",
"snRNA",
"sRNA",
"scRNA",
"scaRNA",
"Mt_tRNA",
"Mt_rRNA",
"rRNA",
"ribozyme"
)
)
g <-
ggplot(counts.nc, aes(x = GeneType, y = Count, fill = GeneType)) +
geom_bar(stat = 'sum') +
labs(x = "biotype", y = "read counts") + theme_minimal() +
scale_y_continuous(labels = label_comma()) +
scale_fill_manual(
values = c(
'miRNA' = '#54693e',
'misc_RNA' = '#9c47cb',
'snRNA' = '#94d14f',
'snoRNA' = '#5c4f9c',
'scaRNA' = '#cca758',
'sRNA' = '#c85a90',
'Mt_tRNA' = '#80d0a8',
'Mt_rRNA' = '#c4533b',
'rRNA' = '#9ea5c0',
'ribozyme' = '#51333c'
)
) +
theme(
axis.text.x = element_text(
angle = 45,
vjust = 1,
hjust = 1,
size = 12
),
strip.text = element_text(
face = "bold",
color = "gray35",
hjust = 0,
size = 10
),
strip.background = element_rect(fill = "white", linetype = "blank"),
legend.position = "none"
) +
facet_wrap("Sample", scales = "free_y", ncol = 4)
#ggplotly(g)
gFigure 3: non-coding biotype read counts
subset the counts file to select only smallRNA genes
snrna <- c('miRNA',
'misc_RNA',
'scRNA',
'snRNA',
'snoRNA',
'sRNA',
'scaRNA')
cts <- dplyr::filter(counts, GeneType %in% snrna) %>%
dplyr::select(Geneid, pTGC_1:mTSC_4)
write_delim(cts, file = "assets/noncoding_counts_star.tsv", delim = "\t")This noncoding_counts_star.tsv and
samples.tsv file will be used for DESeq2
analyses.
DESeq2
For the next steps, we used DESeq2 for performing the DE
analyses. Results were visualized as volcano plots and tables were
exported to excel.
Load packages
setwd("/work/LAS/geetu-lab/arnstrm/mouse.trophoblast.smallRNAseq")
library(DESeq2)
library(RColorBrewer)
library(pheatmap)
library(genefilter)
library(ggrepel)
library(biomaRt)
library(reshape2)
library(PupillometryR)
library(ComplexUpset)
library(splitstackshape)
library(enrichR)Import counts and sample metadata
The counts data and its associated metadata
(coldata) are imported for analyses.
counts = 'assets/noncoding_counts_star.tsv'
groupFile = 'assets/samples.tsv'
coldata <-
read.csv(
groupFile,
row.names = 1,
sep = "\t",
stringsAsFactors = TRUE
)
cts <- as.matrix(read.csv(counts, sep = "\t", row.names = "Geneid"))Reorder columns of cts according to coldata
rows. Check if samples in both files match.
colnames(cts)
#> [1] "pTGC_1" "pTGC_2" "pTGC_3" "pTGC_4" "mTSC_1" "mTSC_2" "mTSC_3" "mTSC_4"
all(rownames(coldata) %in% colnames(cts))
#> [1] TRUE
cts <- cts[, rownames(coldata)]Normalize
The batch corrected read counts are then used for running DESeq2 analyses
dds <- DESeqDataSetFromMatrix(countData = cts,
colData = coldata,
design = ~ Group)
vsd <- vst(dds, blind = FALSE, nsub =500)
keep <- rowSums(counts(dds)) >= 5
dds <- dds[keep, ]
dds <- DESeq(dds)
dds
#> class: DESeqDataSet
#> dim: 1266 8
#> metadata(1): version
#> assays(4): counts mu H cooks
#> rownames(1266): ENSMUSG00000119106.1 ENSMUSG00000119589.1 ...
#> ENSMUSG00000065444.3 ENSMUSG00000077869.3
#> rowData names(22): baseMean baseVar ... deviance maxCooks
#> colnames(8): pTGC_1 pTGC_2 ... mTSC_3 mTSC_4
#> colData names(2): Group sizeFactorvst <- assay(vst(dds, blind = FALSE, nsub = 500))
vsd <- vst(dds, blind = FALSE, nsub = 500)
pcaData <-
plotPCA(vsd,
intgroup = "Group",
returnData = TRUE)
percentVar <- round(100 * attr(pcaData, "percentVar"))PCA plot for QC
PCA plot for the dataset that includes all libraries.
rv <- rowVars(assay(vsd))
select <-
order(rv, decreasing = TRUE)[seq_len(min(500, length(rv)))]
pca <- prcomp(t(assay(vsd)[select, ]))
percentVar <- pca$sdev ^ 2 / sum(pca$sdev ^ 2)
intgroup = "Group"
intgroup.df <- as.data.frame(colData(vsd)[, intgroup, drop = FALSE])
group <- if (length(intgroup) == 1) {
factor(apply(intgroup.df, 1, paste, collapse = " : "))
}
d <- data.frame(
PC1 = pca$x[, 1],
PC2 = pca$x[, 2],
intgroup.df,
name = colnames(vsd)
)plot PCA for components 1 and 2
#nudge <- position_nudge(y = 0.5)
g <- ggplot(d, aes(PC1, PC2, color = Group)) +
scale_shape_manual(values = 1:8) +
scale_color_manual(values = c('pTGC' = '#c6007b',
'mTSC' = '#a0b600')) +
theme_bw() +
theme(legend.title = element_blank()) +
geom_point(size = 2, stroke = 2) +
geom_text_repel(aes(label = name)) +
xlab(paste("PC1", round(percentVar[1] * 100, 2), "% variance")) +
ylab(paste("PC2", round(percentVar[2] * 100, 2), "% variance"))
gFigure 4: PCA plot for the first 2 principal components
Sample distance for QC
sampleDists <- dist(t(assay(vsd)))
sampleDistMatrix <- as.matrix( sampleDists )
rownames(sampleDistMatrix) <- colnames(vsd)
colnames(sampleDistMatrix) <- NULL
colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)
pheatmap(sampleDistMatrix,
clustering_distance_rows = sampleDists,
clustering_distance_cols = sampleDists,
col = colors)Figure 5: Euclidean distance between samples
Set contrasts and find DE genes
resultsNames(dds)
#> [1] "Intercept" "Group_pTGC_vs_mTSC"
res.UndfvsDiff <- results(dds, contrast = c("Group", "mTSC", "pTGC"))
table(res.UndfvsDiff$padj < 0.05)
#>
#> FALSE TRUE
#> 579 294
res.UndfvsDiff <- res.UndfvsDiff[order(res.UndfvsDiff$padj),]
res.UndfvsDiffdata <-
merge(
as.data.frame(res.UndfvsDiff),
as.data.frame(counts(dds, normalized = TRUE)),
by = "row.names",
sort = FALSE
)Creating gene lists
The gene lists have Ensembl gene-ID-version. We need
mirbase_id, gene_biotype and
external_gene_name attached to make the results
interpretable. So we will download metadata from ensembl using
biomaRt package.
ensembl = useMart("ENSEMBL_MART_ENSEMBL")
ensembl = useDataset("mmusculus_gene_ensembl", mart = ensembl)
filterType <- "ensembl_gene_id_version"
filterValues <- rownames(cts)
attributeNames <- c('ensembl_gene_id_version',
'ensembl_gene_id',
'gene_biotype',
'mirbase_id',
'external_gene_name')
annot <- getBM(
attributes = attributeNames,
filters = filterType,
values = filterValues,
mart = ensembl
)
isDup <- duplicated(annot$ensembl_gene_id)
dup <- annot$ensembl_gene_id[isDup]
annot <- annot[!annot$ensembl_gene_id %in% dup, ] #this object will be saved and used later
saveRDS(annot, file = "assets/annot.rds")The rds is saved and reloaded for subsequent run (instead of querying biomart over and over for the same information)
annot <- readRDS("assets/annot.rds")Volcano plots
volcanoPlots2 <-
function(res.se,
string,
first,
second,
color1,
color2,
color3,
ChartTitle) {
res.se <- res.se[order(res.se$padj),]
res.se <-
rownames_to_column(as.data.frame(res.se[order(res.se$padj),]))
names(res.se)[1] <- "Gene"
res.data <-
merge(res.se,
annot,
by.x = "Gene",
by.y = "ensembl_gene_id_version")
res.data <- res.data %>% mutate_all(na_if, "")
res.data <- res.data %>% mutate_all(na_if, " ")
res.data <-
res.data %>% mutate(gene_symbol = coalesce(external_gene_name, Gene))
fc = 1.5
log2fc = log(fc, base = 2)
neg.log2fc = log2fc * -1
res.data$diffexpressed <- "other.genes"
res.data$diffexpressed[res.data$log2FoldChange >= log2fc &
res.data$padj <= 0.05] <- paste("Higher expression in", first)
res.data$diffexpressed[res.data$log2FoldChange <= neg.log2fc &
res.data$padj <= 0.05] <- paste("Higher expression in", second)
res.data$delabel <- NA
res.data$delabel[res.data$log2FoldChange >= log2fc &
res.data$padj <= 0.05 &
!is.na(res.data$padj)] <-
res.data$gene_symbol[res.data$log2FoldChange >= log2fc &
res.data$padj <= 0.05 & !is.na(res.data$padj)]
res.data$delabel[res.data$log2FoldChange <= neg.log2fc &
res.data$padj <= 0.05 &
!is.na(res.data$padj)] <-
res.data$gene_symbol[res.data$log2FoldChange <= neg.log2fc &
res.data$padj <= 0.05 & !is.na(res.data$padj)]
ggplot(res.data,
aes(
x = log2FoldChange,
y = -log10(padj),
col = diffexpressed,
label = delabel
)) +
geom_point(alpha = 0.5) +
xlim(-6, 6) +
theme_classic() +
scale_color_manual(name = "Expression", values = c(color1, color2, color3)) +
geom_text_repel(
data = subset(res.data, padj <= 0.05),
max.overlaps = 15,
show.legend = F,
min.segment.length = Inf,
seed = 42,
box.padding = 0.5
) +
ggtitle(ChartTitle) +
xlab(paste("log2 fold change")) +
ylab("-log10 pvalue (adjusted)") +
theme(legend.text.align = 0)
}g <- volcanoPlots2(
res.UndfvsDiff,
"mTSC_vs_pTGC",
"mTSC",
"pTGC",
"#a0b600",
"#c6007b",
"grey",
ChartTitle = "mTSC (undifferentiated) vs. pTGC (differentiated)"
)
g
#> Warning: Removed 394 rows containing missing values (`geom_point()`).
#> Warning: Removed 1 rows containing missing values (`geom_text_repel()`).
#> Warning: ggrepel: 282 unlabeled data points (too many overlaps). Consider
#> increasing max.overlapsFigure 6: Volcano plot showing genes overexpressed in undifferentiated and differentiated states.
Heatmap
Heatmap for the top 30 variable genes:
topVarGenes <- head(order(rowVars(assay(vsd)), decreasing = TRUE), 30)
mat <- assay(vsd)[ topVarGenes, ]
mat <- mat - rowMeans(mat)
mat2 <- merge(mat,
annot,
by.x = 'row.names',
by.y = "ensembl_gene_id_version")
mat2$gene <- paste0(mat2$external_gene_name," (",mat2$gene_biotype,")")
rownames(mat2) <- mat2[,'gene']
mat2 <- mat2[2:9]
heat_colors <- brewer.pal(9, "YlOrRd")
g <- pheatmap(
mat2,
color = heat_colors,
main = "Top 30 variable small RNA genes",
cluster_rows = T,
cluster_cols = T,
show_rownames = T,
border_color = NA,
fontsize = 10,
scale = "row",
fontsize_row = 10
)
gFigure 7: Heat map for top 30 variable small RNA genes
Write result tables
Here, we will attach the mirbase_id,
gene_biotype and external_gene_name downloaded
in the previous section to the results table. We will also filter the
the table to write:
- DE list that have
padjless than or equal to0.05 - DE list that have
padjless than or equal to0.05, andlog2FoldChangegreater than or equal to fold change of1.5 - DE list that have
padjless than or equal to0.05, andlog2FoldChangeless than or equal to fold change of-1.5 - Full list of DE table without any filtering.
names(res.UndfvsDiffdata)[1] <- "ensembl_gene_id_version"
res.UndfvsDiffdata <-
merge(x = res.UndfvsDiffdata,
y = annot,
by = "ensembl_gene_id_version",
all.x = TRUE)
res.UndfvsDiffdata <-
res.UndfvsDiffdata[, c(1,
(ncol(res.UndfvsDiffdata) - 2):ncol(res.UndfvsDiffdata),
2:(ncol(res.UndfvsDiffdata) - 3))]
res.UndfvsDiffSig <- res.UndfvsDiffdata %>%
filter(padj <= 0.05)
fc = 1.5
log2fc = log(fc, base = 2)
neg.log2fc = log2fc * -1
res.UndfvsDiffSig.up <- res.UndfvsDiffdata %>%
filter(padj <= 0.05 & log2FoldChange >= log2fc)
res.UndfvsDiffSig.dw <- res.UndfvsDiffdata %>%
filter(padj <= 0.05 & log2FoldChange <= neg.log2fc)
mTSC.up <- res.UndfvsDiffSig.up %>% dplyr::filter(gene_biotype == "miRNA") %>% dplyr::select(mirbase_id)
pTGC.up <- res.UndfvsDiffSig.dw %>% dplyr::filter(gene_biotype == "miRNA") %>% dplyr::select(mirbase_id)
write_delim(res.UndfvsDiffdata,
file = "results/DESeq2_results_mTSC_vs_pTGC_full-table.tsv",
delim = "\t")
write_delim(res.UndfvsDiffSig,
file = "results/DESeq2_results_mTSC_vs_pTGC_adj.p-le-0.05.tsv",
delim = "\t")
write_delim(res.UndfvsDiffSig.up,
file = "results/DESeq2_results_mTSC_vs_pTGC_adj.p-le-0.05_fc-ge-1.5.tsv",
delim = "\t")
write_delim(res.UndfvsDiffSig.dw,
file = "results/DESeq2_results_mTSC_vs_pTGC_adj.p-le-0.05_fc-le-neg1.5.tsv",
delim = "\t")
mi.mTSC.up <- mTSC.up
mi.pTGC.up <- pTGC.up
mi.mTSC.and.pTGC <- unique(rbind(mi.mTSC.up, mi.pTGC.up))
write_delim(mTSC.up,
file = "results/miRNAs_up_mTSC.txt",
delim = "\t")
write_delim(pTGC.up,
file = "results/miRNAs_up_pTGC.txt",
delim = "\t")
write_delim(mi.mTSC.and.pTGC,
file = "results/miRNAs_up_mTSC.and.pTGC.txt",
delim = "\t")Characterizing smallRNA expression
To check the expression of genes in each condition, we looked at the highly expressed genes and their composition. The analyses is shown below.
exp <- res.UndfvsDiffdata[, c(1:4, 11:ncol(res.UndfvsDiffdata))]
exp$external_gene_name <-
ifelse(exp$external_gene_name == "",
exp$ensembl_gene_id_version,
exp$external_gene_name)
exp$gene <- paste0(exp$external_gene_name, "(", exp$gene_biotype, ")")
renamed.exp <- exp %>% dplyr::select(gene, ensembl_gene_id_version:mTSC_4)
renamed.exp.long <-
melt(
renamed.exp,
id.vars = c(
'gene',
'ensembl_gene_id_version',
'gene_biotype',
'mirbase_id',
'external_gene_name'
)
)
colnames(renamed.exp.long) <-
c('gene',
'ensembl_gene_id_version',
'gene_biotype',
'mirbase_id',
'external_gene_name',
'replicates',
'norm.expression'
)
renamed.exp.long$condition <- "NA"
renamed.exp.long$condition[which(str_detect(renamed.exp.long$replicates, "pTGC_"))] <-
"pTGC"
renamed.exp.long$condition[which(str_detect(renamed.exp.long$replicates, "mTSC_"))] <-
"mTSC"
renamed.exp.long <-
renamed.exp.long %>% filter(norm.expression > 0)
renamed.exp.long <- na.omit(renamed.exp.long)
# SOURCE: https://ourcodingclub.github.io/tutorials/dataviz-beautification/
theme_niwot <- function() {
theme_bw() +
theme(
axis.text = element_text(size = 12),
axis.title = element_text(size = 12),
axis.line.x = element_line(color = "black"),
axis.line.y = element_line(color = "black"),
panel.border = element_blank(),
panel.grid.major.x = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
panel.grid.major.y = element_blank(),
plot.margin = unit(c(1, 1, 1, 1), units = , "cm"),
plot.title = element_text(
size = 12,
vjust = 1,
hjust = 0
),
legend.text = element_text(size = 12),
legend.title = element_blank(),
legend.position = c(0.95, 0.15),
legend.key = element_blank(),
legend.background = element_rect(
color = "black",
fill = "transparent",
size = 2,
linetype = "blank"
)
)
}Normalized expression plots
vlnPlot <-
function(dataIn = renamed.exp.long,
xcol = "replicates",
fillcol = "condition",
expre = "norm.expression") {
p <- ggplot(data = dataIn,
aes_string(x = xcol, y = expre, fill = fillcol)) +
geom_flat_violin(position = position_nudge(x = 0.2, y = 0),
alpha = 0.6,
trim = FALSE) +
geom_point(
aes_string(y = expre, color = fillcol),
position = position_jitter(width = 0.15),
size = 1,
alpha = 0.5
) +
geom_boxplot(width = 0.2,
outlier.shape = NA,
alpha = 0.8) + stat_summary(
fun = mean,
geom = "point",
shape = 23,
size = 2
) +
labs(y = "Normalized Expression", x = NULL) +
guides(fill = "none", color = "none") +
scale_y_log10(label = comma) +
scale_fill_manual(values = c('pTGC' = '#c6007b',
'mTSC' = '#a0b600')) +
scale_color_manual(values = c('pTGC' = '#c6007b',
'mTSC' = '#a0b600')) +
theme_niwot() + theme(axis.text.x = element_text(
angle = 45,
vjust = 1,
hjust = 1
))
p
}Expression plots
Replicates
vlnPlot(xcol="replicates")
#> Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
#> ℹ Please use tidy evaluation ideoms with `aes()`
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
#> Warning: The `size` argument of `element_rect()` is deprecated as of ggplot2 3.4.0.
#> ℹ Please use the `linewidth` argument instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.
#> Warning: Using the `size` aesthietic with geom_polygon was deprecated in ggplot2 3.4.0.
#> ℹ Please use the `linewidth` aesthetic instead.
#> This warning is displayed once every 8 hours.
#> Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
#> generated.Figure 8A: Normalized expression of genes in undifferentiated and differentiated samples (replicate)
Conditions
vlnPlot(xcol="condition")Figure 8B: Normalized expression of genes in undifferentiated and differentiated samples (condition)
Biotypes
vlnPlot(xcol="gene_biotype")Figure 8C: Normalized expression of genes in undifferentiated and differentiated samples (split based on gene biotype)
Highly expressed small RNAs
df.both <- renamed.exp %>%
rowwise() %>%
mutate(Both = mean(c(
pTGC_1, pTGC_2, pTGC_3, pTGC_4, mTSC_1, mTSC_2, mTSC_3, mTSC_4
))) %>%
dplyr::select(gene:external_gene_name, Both) %>%
dplyr::filter(Both > 0) %>%
ungroup() %>%
mutate(quart = ntile(Both, 4)) %>%
mutate(decile = ntile(Both, 10))
df.diff <- renamed.exp %>%
rowwise() %>%
mutate(pTGC = mean(c(
pTGC_1, pTGC_2, pTGC_3, pTGC_4
))) %>%
dplyr::select(gene:external_gene_name, pTGC) %>%
dplyr::filter(pTGC > 0) %>%
ungroup() %>%
mutate(quart = ntile(pTGC, 4)) %>%
mutate(decile = ntile(pTGC, 10))
df.undiff <- renamed.exp %>%
rowwise() %>%
mutate(mTSC = mean(c(
mTSC_1, mTSC_2, mTSC_3, mTSC_4
))) %>%
dplyr::select(gene:external_gene_name, mTSC) %>%
dplyr::filter(mTSC > 0) %>%
ungroup() %>%
mutate(quart = ntile(mTSC, 4)) %>%
mutate(decile = ntile(mTSC, 10))
filterCuts <- function(dataIn = df.undiff,
cutOff = 4,
type = decile) {
type <- enquo(type)
dataIn %>%
dplyr::filter(!!type == cutOff) %>%
dplyr::select(ensembl_gene_id_version)
}
both.75pc <- filterCuts(df.both, 4, type = quart)
undiff.75pc <- filterCuts(df.undiff, 4, type = quart)
diff.75pc <- filterCuts(df.diff, 4, type = quart)
filterMiRNA <- function(dataIn = df) {
dataIn %>% left_join(
annot,
by = "ensembl_gene_id_version",
) %>% filter(gene_biotype == "miRNA") %>% dplyr::select(mirbase_id)
}
mi.both.75pc <- filterMiRNA(both.75pc)
mi.undiff.75pc <- filterMiRNA(undiff.75pc)
mi.diff.75pc <- filterMiRNA(diff.75pc)
write_delim(
mi.undiff.75pc,
file = paste0("results/miRNAs_75pc_mTSC.txt"),
delim = "\t"
)
write_delim(
mi.diff.75pc,
file = paste0("results/miRNAs_75pc_pTGC.txt"),
delim = "\t"
)
write_delim(
mi.both.75pc,
file = paste0("results/miRNAs_75pc_both.txt"),
delim = "\t"
)
quartile.data <- data.frame(table(diff.75pc)) %>%
full_join(data.frame(table(undiff.75pc)),
by = c("ensembl_gene_id_version" = "ensembl_gene_id_version")) %>%
replace(is.na(.), 0) %>%
dplyr::rename(diff75pc=Freq.x, undiff75pc=Freq.y) %>%
left_join(annot, by = c("ensembl_gene_id_version" = "ensembl_gene_id_version")) %>%
dplyr::select(ensembl_gene_id_version, diff75pc, undiff75pc, gene_biotype) %>%
column_to_rownames(var = "ensembl_gene_id_version")
colnames(quartile.data) <- c("pTGC.75pc", "mTSC.75pc", "gene_biotype")
plotUpSet <- function(fulltable = decile.data) {
inter <- colnames(fulltable)[1:2]
p <- upset(
fulltable,
inter,
annotations = list(
'smallRNA type' = (
ggplot(mapping = aes(fill = gene_biotype)) +
geom_bar(stat = 'count', position = 'fill') +
scale_y_continuous(labels = scales::percent_format()) +
scale_fill_manual(
values = c(
'miRNA' = '#54693e',
'misc_RNA' = '#9c47cb',
'snRNA' = '#94d14f',
'snoRNA' = '#5c4f9c',
'scaRNA' = '#cca758',
'sRNA' = '#c85a90'
)
)
+ ylab('smallRNA proportion')
)
),
queries = list(
upset_query(
intersect = inter,
color = '#C19B5D',
fill = '#C19B5D',
only_components = c('intersections_matrix', 'Intersection size')
),
upset_query(
intersect = inter[1],
color = '#c6007b',
fill = '#c6007b',
only_components = c('intersections_matrix', 'Intersection size')
),
upset_query(
intersect = inter[2],
color = '#a0b600',
fill = '#a0b600',
only_components = c('intersections_matrix', 'Intersection size')
)
),
width_ratio = 0.4,
set_sizes = (
upset_set_size(geom = geom_bar(
aes(fill = gene_biotype, x = group),
width = 0.8
),
position = 'right') + theme(legend.position = "none") +
scale_fill_manual(
values = c(
'miRNA' = '#54693e',
'misc_RNA' = '#9c47cb',
'snRNA' = '#94d14f',
'snoRNA' = '#5c4f9c',
'scaRNA' = '#cca758',
'sRNA' = '#c85a90'
)
)
),
guides = 'over'
)
p
}Intersection plots
quartile
plotUpSet(quartile.data)Figure 9A: Gene expression greater than 75th percentile (intersection)
Save intersection results
filterUpsetRes <-
function(datatable, title = "title") {
data.annot <-
merge(datatable[1:2],
annot,
by.x = 0,
by.y = "ensembl_gene_id_version",
all.x = TRUE)
mirna.annot <- data.annot %>%
dplyr::filter(.[[2]] == 1 & .[[3]] == 1) %>%
dplyr::filter(gene_biotype == "miRNA")
snrna.annot <- data.annot %>%
dplyr::filter(.[[2]] == 1 & .[[3]] == 1)
write_delim(
mirna.annot,
file = paste0("results/intersection_miRNA_", title , ".tsv"),
delim = "\t"
)
write_delim(
snrna.annot,
file = paste0("results/intersection_smallRNA_", title , ".tsv"),
delim = "\t"
)
}
filterUpsetRes(quartile.data, title = "quartile")Finding target genes for miRNAs
The mirdb.org database allows you to find target genes for each miRNA. We downloaded the file from the server and linked each miRNA form our lists to their targets The information downloaded from the server had score information, and for many other species. A filtered list of just mouse, with score >= 80 was created. The target gene ids were in RefSeq format, which was convererted to gene symbol as well.
cd assets
wget https://mirdb.org/download/miRDB_v6.0_prediction_result.txt.gz
gunzip miRDB_v6.0_prediction_result.txt.gzlibrary(org.Mm.eg.db)
mirdb <- read.delim("assets/miRDB_v6.0_prediction_result.txt", header=FALSE)
colnames(mirdb) <- c("mirbase_id", "refseq", "score")
mmu.mirdb <- mirdb %>% filter(str_detect(mirbase_id, "^mmu-") & score >= 80) %>%
dplyr::select(mirbase_id, refseq)
cols <- c("REFSEQ", "ENSEMBL", "SYMBOL", "GENENAME")
mirdb.ids <- AnnotationDbi::select(org.Mm.eg.db, keys=mmu.mirdb$refseq, columns=cols, keytype="REFSEQ")
mirdb.info <- left_join(mmu.mirdb, mirdb.ids, by=c('refseq'='REFSEQ')) %>%
dplyr::select(mirbase_id, refseq, ENSEMBL, SYMBOL) %>%
distinct() %>%
mutate(mirbase_noprime = gsub("-3p$|-5p$", "", mirbase_id),
prime = gsub("^-", "", str_extract(mirbase_id, "-3p$|-5p$"))) %>%
dplyr::select(mirbase_noprime, refseq, ENSEMBL, SYMBOL, prime)
colnames(mirdb.info) <- c("mirbase_id", "refseq", "ENSEMBL", "SYMBOL", "prime")
mirdb.info$mirbase_id <- tolower(mirdb.info$mirbase_id)
write_delim(mirdb.info, "targets/mirDB_info.tsv", delim = "\t")
saveRDS(mirdb.info, file = "assets/mirdb.rds")The rds is saved and reloaded for subsequent run (instead of rerunning everytime we compiled the RMarkdown).
mirdb.info <- readRDS("assets/mirdb.rds")Target genes for miRNAs
miTargets.mTSC.up <- mi.mTSC.up %>%
left_join(mirdb.info, by = c("mirbase_id" = "mirbase_id")) %>%
dplyr::select(SYMBOL) %>%
distinct(SYMBOL)
miTargets.pTGC.up <- mi.pTGC.up %>%
left_join(mirdb.info, by = c("mirbase_id" = "mirbase_id")) %>%
dplyr::select(SYMBOL) %>%
distinct(SYMBOL)
miTargets.mTSC.and.pTGC <- as.data.frame(intersect(miTargets.mTSC.up$SYMBOL,
miTargets.pTGC.up$SYMBOL))
colnames(miTargets.mTSC.and.pTGC) <- "SYMBOL"
miTargets.only.in.mTSC <-
as.data.frame(miTargets.mTSC.up$SYMBOL[!(miTargets.mTSC.up$SYMBOL %in%
miTargets.pTGC.up$SYMBOL)])
colnames(miTargets.only.in.mTSC) <- "SYMBOL"
miTargets.only.in.pTGC <-
as.data.frame(miTargets.pTGC.up$SYMBOL[!(miTargets.pTGC.up$SYMBOL %in%
miTargets.mTSC.up$SYMBOL)])
colnames(miTargets.only.in.pTGC) <- "SYMBOL"
miTargets.diff.75pc <- mi.diff.75pc %>%
left_join(mirdb.info, by = c("mirbase_id" = "mirbase_id")) %>%
dplyr::select(SYMBOL) %>%
distinct(SYMBOL)
miTargets.undiff.75pc <- mi.undiff.75pc %>%
left_join(mirdb.info, by = c("mirbase_id" = "mirbase_id")) %>%
dplyr::select(SYMBOL) %>%
distinct(SYMBOL)
miRNAs_75pc_mTSC <- mi.undiff.75pc %>%
left_join(mirdb.info, by = c("mirbase_id" = "mirbase_id"))
miRNAs_75pc_pTGC <- mi.diff.75pc %>%
left_join(mirdb.info, by = c("mirbase_id" = "mirbase_id"))
mirs_up_mTSC <- mi.mTSC.up %>%
left_join(mirdb.info, by = c("mirbase_id" = "mirbase_id"))
mirs_up_pTGC <- mi.pTGC.up %>%
left_join(mirdb.info, by = c("mirbase_id" = "mirbase_id"))
mirs_mTSC_and_pTGC <- mi.mTSC.and.pTGC %>%
left_join(mirdb.info, by = c("mirbase_id" = "mirbase_id"))
# create miRNA and thier target lists
targetsLists = list(
miRNAs_75pc_mTSC = miRNAs_75pc_mTSC,
miRNAs_75pc_pTGC = miRNAs_75pc_pTGC,
miRNAs_up_mTSC = mirs_up_mTSC,
miRNAs_up_pTGC = mirs_up_pTGC,
miRNAs_mTSC.and.pTGC = mirs_mTSC_and_pTGC
)
#create a geneList for later use
geneLists = list(
miRNAs_75pc_mTSC = miTargets.undiff.75pc$SYMBOL,
miRNAs_75pc_pTGC = miTargets.diff.75pc$SYMBOL,
miRNAs_up_mTSC = miTargets.mTSC.up$SYMBOL,
miRNAs_up_pTGC = miTargets.pTGC.up$SYMBOL,
miRNAs_up_mTSC.and.pTGC = miTargets.mTSC.and.pTGC$SYMBOL,
miRNAs_up_only.in.mTSC = miTargets.only.in.mTSC$SYMBOL,
miRNAs_up_only.in.pTGC = miTargets.only.in.pTGC$SYMBOL
)
lengths(geneLists)
#> miRNAs_75pc_mTSC miRNAs_75pc_pTGC miRNAs_up_mTSC
#> 10791 11171 9733
#> miRNAs_up_pTGC miRNAs_up_mTSC.and.pTGC miRNAs_up_only.in.mTSC
#> 5810 4589 5144
#> miRNAs_up_only.in.pTGC
#> 1221
library(ggvenn)
y <- list(pTGC = miTargets.pTGC.up$SYMBOL, mTSC = miTargets.mTSC.up$SYMBOL)
ggvenn(
y,
fill_color = c("#c6007b", "#a0b600"),
stroke_size = 0.3,
set_name_size = 4
)Figure 10: Target genes of miRNAs DE in diff and mTSC samples (intersection)
Enrichment analyses of target genes
source( "/work/LAS/geetu-lab/arnstrm/mouse.trophoblast.smallRNAseq/assets/theme_clean.R")
library(TissueEnrich)
plotTE <- function(inputGenes = gene.list,
myColor = "color") {
gs <-
GeneSet(geneIds = inputGenes,
organism = "Mus Musculus",
geneIdType = SymbolIdentifier())
output <- teEnrichment(inputGenes = gs, rnaSeqDataset = 3)
en.output <-
setNames(data.frame(assay(output[[1]]),
row.names = rowData(output[[1]])[, 1]),
colData(output[[1]])[, 1])
en.output$Tissue <- rownames(en.output)
logp <- -log10(0.05)
en.output <-
mutate(en.output,
significance = ifelse(Log10PValue > logp,
"colored", "nocolor"))
en.output$Sig <- "NA"
ggplot(en.output, aes(reorder(Tissue, Log10PValue),
Log10PValue,
fill = significance)) +
geom_bar(stat = 'identity') +
theme_clean() + ylab("- log10 adj. p-value") + xlab("") +
scale_fill_manual(values = c("colored" = myColor, "nocolor" = "gray")) +
scale_y_continuous(expand = expansion(mult = c(0, .1)),
breaks = scales::pretty_breaks()) +
coord_flip()
}
plotTE.heatmap <-
function(inputGenes = gene.list,
inputTissue = "E14.5-Brain",
GeneNames = FALSE
) {
gs <-
GeneSet(geneIds = inputGenes,
organism = "Mus Musculus",
geneIdType = SymbolIdentifier())
output <- teEnrichment(inputGenes = gs, rnaSeqDataset = 3)
en.output <-
setNames(data.frame(assay(output[[1]]),
row.names = rowData(output[[1]])[, 1]),
colData(output[[1]])[, 1])
en.output$Tissue <- rownames(en.output)
seExp <- output[[2]][[inputTissue]]
exp <-
setNames(data.frame(assay(seExp), row.names = rowData(seExp)[, 1]),
colData(seExp)[, 1])
exp <- head(exp[order(exp$`E14.5-Brain`, decreasing = TRUE), ], 25)
g <- pheatmap(
exp,
color = heat_colors,
cluster_rows = F,
cluster_cols = T,
show_rownames = GeneNames,
border_color = NA,
fontsize = 10,
scale = "row",
fontsize_row = 8
)
g
}
plotTE.heatmap.full <-
function(inputGenes = gene.list,
inputTissue = "E14.5-Brain",
GeneNames = FALSE,
string = "table.tsv"
) {
gs <-
GeneSet(geneIds = inputGenes,
organism = "Mus Musculus",
geneIdType = SymbolIdentifier())
output <- teEnrichment(inputGenes = gs, rnaSeqDataset = 3)
en.output <-
setNames(data.frame(assay(output[[1]]),
row.names = rowData(output[[1]])[, 1]),
colData(output[[1]])[, 1])
en.output$Tissue <- rownames(en.output)
seExp <- output[[2]][[inputTissue]]
exp <-
setNames(data.frame(assay(seExp), row.names = rowData(seExp)[, 1]),
colData(seExp)[, 1])
d <- as.data.frame(rownames(exp))
g <- pheatmap(
exp,
color = heat_colors,
cluster_rows = F,
cluster_cols = T,
show_rownames = GeneNames,
border_color = NA,
fontsize = 10,
scale = "row",
fontsize_row = 8
)
g
}
setEnrichrSite("Enrichr")
makeEnrichR <-
function(inputGenes = gene.list) {
websiteLive <- TRUE
myDBs <-
c(
"DisGeNET",
"WikiPathways_2019_Human",
"WikiPathways_2019_Mouse",
"KEGG_2019_Mouse"
)
if (websiteLive) {
enrichr(inputGenes, myDBs)
}
}
plotEnrichR <- function(enriched, table="string", myColor = "slateblue") {
logp <- -log10(0.05)
myData <- enriched[[table]]
myData$negLogP <- -log10(myData$P.value)
myData <-
mutate(myData,
significance = ifelse(negLogP > logp, "colored", "nocolor"))
myData$Sig <- "NA"
myData <- head(arrange(myData, -negLogP, Term), 15)
ggplot(myData, aes(reorder(Term, negLogP),
negLogP,
fill = significance)) +
geom_bar(stat = 'identity') +
theme_clean() + ylab("- log10 p-value") + xlab("") +
scale_fill_manual(values = c("colored" = myColor, "nocolor" = "gray")) +
scale_y_continuous(expand = expansion(mult = c(0, .1)),
breaks = scales::pretty_breaks()) +
coord_flip()
}
heatmap.genelst <-
function(inputGenes = gene.list,
inputTissue = "E14.5-Brain"){
gs <-
GeneSet(geneIds = inputGenes,
organism = "Mus Musculus",
geneIdType = SymbolIdentifier())
output <- teEnrichment(inputGenes = gs, rnaSeqDataset = 3)
en.output <-
setNames(data.frame(assay(output[[1]]),
row.names = rowData(output[[1]])[, 1]),
colData(output[[1]])[, 1])
en.output$Tissue <- rownames(en.output)
seExp <- output[[2]][[inputTissue]]
exp <-
setNames(data.frame(assay(seExp), row.names = rowData(seExp)[, 1]),
colData(seExp)[, 1])
gl <- dplyr::select(exp, `E14.5-Brain`) %>% rownames
gl
}Enrichment plots (TissueEnrich)
pTGC
plotTE(geneLists$miRNAs_up_pTGC, myColor = "#c6007b")Figure 11A: Target genes of miRNAs up-regulated in pTGC enrichment in Mouse ENCODE data
mTSC
plotTE(geneLists$miRNAs_up_mTSC, myColor = "#a0b600")Figure 11B: Target genes of miRNAsup-regulated in mTSC) enrichment in Mouse ENCODE data
pTGC & mTSC
plotTE(geneLists$miRNAs_up_mTSC.and.pTGC, myColor = "#C19B5D")Figure 11C: Target genes of miRNAs up-regulated in both pTGC and mTSC) enrichment in Mouse ENCODE data
pTGC ONLY
plotTE(geneLists$miRNAs_up_only.in.pTGC, myColor = "#c6007b")Figure 11D: Target genes of miRNAs up-regulated ONLY in pTGC) enrichment in Mouse ENCODE data
mTSC ONLY
plotTE(geneLists$miRNAs_up_only.in.mTSC, myColor = "#a0b600")Figure 11E: Target genes of miRNAs up-regulated ONLY in mTSC) enrichment in Mouse ENCODE data
Enrichment Heatmaps for E14.5-Brain (top 25, with gene names)
pTGC
plotTE.heatmap(geneLists$miRNAs_up_pTGC,
inputTissue = "E14.5-Brain",
GeneNames = TRUE)Figure 11A: Target genes of miRNAs up-regulated in pTGC enrichment in Mouse ENCODE data
mTSC
plotTE.heatmap(geneLists$miRNAs_up_mTSC,
inputTissue = "E14.5-Brain",
GeneNames = TRUE)Figure 11B: Target genes of miRNAsup-regulated in mTSC) enrichment in Mouse ENCODE data
pTGC & mTSC
plotTE.heatmap(
geneLists$miRNAs_up_mTSC.and.pTGC,
inputTissue = "E14.5-Brain",
GeneNames = TRUE
)Figure 11C: Target genes of miRNAs up-regulated in both pTGC and mTSC) enrichment in Mouse ENCODE data
pTGC ONLY
plotTE.heatmap(
geneLists$miRNAs_up_only.in.pTGC,
inputTissue = "E14.5-Brain",
GeneNames = TRUE
)Figure 11D: Target genes of miRNAs up-regulated ONLY in pTGC) enrichment in Mouse ENCODE data
mTSC ONLY
plotTE.heatmap(
geneLists$miRNAs_up_only.in.mTSC,
inputTissue = "E14.5-Brain",
GeneNames = TRUE
)Figure 11E: Target genes of miRNAs up-regulated ONLY in mTSC) enrichment in Mouse ENCODE data
Enrichment Heatmaps for E14.5-Brain (all, without gene names)
pTGC
plotTE.heatmap.full(geneLists$miRNAs_up_pTGC,
inputTissue = "E14.5-Brain",
string = "up_in_diff.tsv",
GeneNames = FALSE)Figure 11A: Target genes of miRNAs up-regulated in pTGC enrichment in Mouse ENCODE data
mTSC
plotTE.heatmap.full(geneLists$miRNAs_up_mTSC,
inputTissue = "E14.5-Brain",
string = "up_in_undiff.tsv",
GeneNames = FALSE)Figure 11B: Target genes of miRNAsup-regulated in mTSC) enrichment in Mouse ENCODE data
pTGC & mTSC
plotTE.heatmap.full(
geneLists$miRNAs_up_mTSC.and.pTGC,
inputTissue = "E14.5-Brain",
string = "up_in_diff_and_undiff.tsv",
GeneNames = FALSE
)Figure 11C: Target genes of miRNAs up-regulated in both pTGC and mTSC) enrichment in Mouse ENCODE data
pTGC ONLY
plotTE.heatmap.full(
geneLists$miRNAs_up_only.in.pTGC,
inputTissue = "E14.5-Brain",
string = "up_in_diff_only.tsv",
GeneNames = FALSE
)Figure 11D: Target genes of miRNAs up-regulated ONLY in pTGC) enrichment in Mouse ENCODE data
mTSC ONLY
plotTE.heatmap.full(
geneLists$miRNAs_up_only.in.mTSC,
inputTissue = "E14.5-Brain",
string = "up_in_udiff_only.tsv",
GeneNames = FALSE
)Figure 11E: Target genes of miRNAs up-regulated ONLY in mTSC) enrichment in Mouse ENCODE data
Extract target genes enriched for E14.5-Brain
brEnrTargets_up_mTSC.and.pTGC <-
heatmap.genelst(geneLists$miRNAs_up_mTSC.and.pTGC,
inputTissue = "E14.5-Brain")
brEnrTargets_up_mTSC <- heatmap.genelst(geneLists$miRNAs_up_mTSC,
inputTissue = "E14.5-Brain")
brEnrTargets_up_only.in.mTSC <-
heatmap.genelst(geneLists$miRNAs_up_only.in.mTSC,
inputTissue = "E14.5-Brain")
brEnrTargets_up_only.in.pTGC <-
heatmap.genelst(geneLists$miRNAs_up_only.in.pTGC,
inputTissue = "E14.5-Brain")
brEnrTargets_up_pTGC <- heatmap.genelst(geneLists$miRNAs_up_pTGC,
inputTissue = "E14.5-Brain")
brEnrTargets_75pc_mTSC <- heatmap.genelst(geneLists$miRNAs_75pc_mTSC,
inputTissue = "E14.5-Brain")
brEnrTargets_75pc_pTGC <- heatmap.genelst(geneLists$miRNAs_75pc_pTGC,
inputTissue = "E14.5-Brain")
brainGeneLists = list(
brEnrTargets_up_mTSC.and.pTGC = brEnrTargets_up_mTSC.and.pTGC,
brEnrTargets_up_mTSC = brEnrTargets_up_mTSC,
brEnrTargets_up_only.in.mTSC = brEnrTargets_up_only.in.mTSC,
brEnrTargets_up_only.in.pTGC = brEnrTargets_up_only.in.pTGC,
brEnrTargets_up_pTGC = brEnrTargets_up_pTGC,
brEnrTargets_75pc_pTGC = brEnrTargets_75pc_pTGC,
brEnrTargets_75pc_mTSC = brEnrTargets_75pc_mTSC
)
lengths(brainGeneLists)
#> brEnrTargets_up_mTSC.and.pTGC brEnrTargets_up_mTSC
#> 353 578
#> brEnrTargets_up_only.in.mTSC brEnrTargets_up_only.in.pTGC
#> 225 50
#> brEnrTargets_up_pTGC brEnrTargets_75pc_pTGC
#> 403 641
#> brEnrTargets_75pc_mTSC
#> 627miRNA targets, disease db enrichment tests
undiffEnr <- makeEnrichR(brainGeneLists$brEnrTargets_up_mTSC)
#> Uploading data to Enrichr... Done.
#> Querying DisGeNET... Done.
#> Querying WikiPathways_2019_Human... Done.
#> Querying WikiPathways_2019_Mouse... Done.
#> Querying KEGG_2019_Mouse... Done.
#> Parsing results... Done.
Sys.sleep(60)
diffEnr <- makeEnrichR(brainGeneLists$brEnrTargets_up_pTGC)
#> Uploading data to Enrichr... Done.
#> Querying DisGeNET... Done.
#> Querying WikiPathways_2019_Human... Done.
#> Querying WikiPathways_2019_Mouse... Done.
#> Querying KEGG_2019_Mouse... Done.
#> Parsing results... Done.
Sys.sleep(60)
undiffOnlyEnr <- makeEnrichR(brainGeneLists$brEnrTargets_up_only.in.mTSC)
#> Uploading data to Enrichr... Done.
#> Querying DisGeNET... Done.
#> Querying WikiPathways_2019_Human... Done.
#> Querying WikiPathways_2019_Mouse... Done.
#> Querying KEGG_2019_Mouse... Done.
#> Parsing results... Done.
Sys.sleep(60)
diffOnlyEnr <- makeEnrichR(brainGeneLists$brEnrTargets_up_only.in.pTGC)
#> Uploading data to Enrichr... Done.
#> Querying DisGeNET... Done.
#> Querying WikiPathways_2019_Human... Done.
#> Querying WikiPathways_2019_Mouse... Done.
#> Querying KEGG_2019_Mouse... Done.
#> Parsing results... Done.
Sys.sleep(60)
bothEnr <- makeEnrichR(brainGeneLists$brEnrTargets_up_mTSC.and.pTGC)
#> Uploading data to Enrichr... Done.
#> Querying DisGeNET... Done.
#> Querying WikiPathways_2019_Human... Done.
#> Querying WikiPathways_2019_Mouse... Done.
#> Querying KEGG_2019_Mouse... Done.
#> Parsing results... Done.
# save these, so we don't query the server frequentyly
save(undiffEnr, diffEnr, undiffOnlyEnr, diffOnlyEnr, bothEnr, file = "results/enrichmentResults.Rdata")1. pTGC
DisGeNET
plotEnrichR(diffEnr, table = "DisGeNET", myColor = "#c6007b")placeholder
WikiPathways_2019_Mouse
plotEnrichR(diffEnr, table = "WikiPathways_2019_Mouse", myColor = "#c6007b")placeholder
WikiPathways_2019_Human
plotEnrichR(diffEnr, table = "WikiPathways_2019_Human", myColor = "#c6007b")placeholder
KEGG_2019_Mouse
plotEnrichR(diffEnr, table = "KEGG_2019_Mouse", myColor = "#c6007b")placeholder
2. TSC
DisGeNET
plotEnrichR(undiffEnr, table = "DisGeNET", myColor = "#a0b600")placeholder
WikiPathways_2019_Mouse
plotEnrichR(undiffEnr, table = "WikiPathways_2019_Mouse", myColor = "#a0b600")placeholder
WikiPathways_2019_Human
plotEnrichR(undiffEnr, table = "WikiPathways_2019_Human", myColor = "#a0b600")placeholder
KEGG_2019_Mouse
plotEnrichR(undiffEnr, table = "KEGG_2019_Mouse", myColor = "#a0b600")placeholder
3. Both pTGC and TSC
DisGeNET
plotEnrichR(bothEnr, table = "DisGeNET", myColor = "#C19B5D")placeholder
WikiPathways_2019_Mouse
plotEnrichR(bothEnr, table = "WikiPathways_2019_Mouse", myColor = "#C19B5D")placeholder
WikiPathways_2019_Human
plotEnrichR(bothEnr, table = "WikiPathways_2019_Human", myColor = "#C19B5D")placeholder
KEGG_2019_Mouse
plotEnrichR(bothEnr, table = "KEGG_2019_Mouse", myColor = "#C19B5D")placeholder
4. pTGC only
DisGeNET
plotEnrichR(diffOnlyEnr, table = "DisGeNET", myColor = "#c6007b")placeholder
WikiPathways_2019_Mouse
plotEnrichR(diffOnlyEnr, table = "WikiPathways_2019_Mouse", myColor = "#c6007b")placeholder
WikiPathways_2019_Human
plotEnrichR(diffOnlyEnr, table = "WikiPathways_2019_Human", myColor = "#c6007b")placeholder
KEGG_2019_Mouse
plotEnrichR(diffOnlyEnr, table = "KEGG_2019_Mouse", myColor = "#c6007b")placeholder
5. TSC only
DisGeNET
plotEnrichR(undiffOnlyEnr, table = "DisGeNET", myColor = "#a0b600")placeholder
WikiPathways_2019_Mouse
plotEnrichR(undiffOnlyEnr, table = "WikiPathways_2019_Mouse", myColor = "#a0b600")placeholder
WikiPathways_2019_Human
plotEnrichR(undiffOnlyEnr, table = "WikiPathways_2019_Human", myColor = "#a0b600")placeholder
KEGG_2019_Mouse
plotEnrichR(undiffOnlyEnr, table = "KEGG_2019_Mouse", myColor = "#a0b600")placeholder
Other plots
myTE <- function(inputGenes = gene.list,
myColor = "slateblue") {
inputGenes
gs <-
GeneSet(
geneIds = unique(inputGenes),
organism = "Mus Musculus",
geneIdType = SymbolIdentifier()
)
output <- teEnrichment(inputGenes = gs, rnaSeqDataset = 3)
en.output <-
setNames(data.frame(assay(output[[1]]),
row.names = rowData(output[[1]])[, 1]),
colData(output[[1]])[, 1])
en.output$Tissue <- rownames(en.output)
rownames(en.output) <- c()
en.output
}
runTEonList <- function(myTargetList = miRNAs_75pc_mTSC) {
data_list <- split(myTargetList, f = myTargetList$mirbase_id)
data_list <- Filter(Negate(is.na), data_list)
myDataList <- lapply(data_list, `[[`, "SYMBOL")
myDataList <-
myDataList[names(myDataList) != "" &
myDataList != "" & lengths(myDataList) > 0]
myDataList <- compact(myDataList)
te.miRNA <- lapply(myDataList, myTE)
infoTE <- lapply(te.miRNA, `[`, c("Log10PValue", "Tissue"))
infoTE <- purrr::imap(infoTE, ~ mutate(.x, miRNA = .y))
merged_info <- bind_rows(infoTE, .id = "miRNA")
merged_info <-
merged_info[!(is.na(merged_info$miRNA) |
merged_info$miRNA == ""), ]
merged_info
}
plotBubbleTE <- function(merged_info = TE.miRNAs_75pc_mTSC) {
ggplot(merged_info, aes(x = miRNA, y = Tissue)) +
geom_point(aes(size = Log10PValue, fill = Tissue),
alpha = 0.75,
shape = 21) +
scale_size_continuous(limits = c(1, 8), range = c(1, 8)) +
guides(fill = "none") +
labs(x = "miRNAs",
y = "",
size = "-log10(p-adj)",
fill = "") +
theme(
legend.key = element_blank(),
axis.text.x = element_text(
colour = "black",
size = 8,
angle = 45,
vjust = 1,
hjust = 1
),
axis.text.y = element_text(colour = "black", size = 8),
legend.text = element_text(size = 10, colour = "black"),
legend.title = element_text(size = 12),
panel.background = element_blank(),
panel.border = element_rect(colour = "black", fill = NA),
legend.position = "right")
}TE bubble plots for each miRNA
Enrichment bubble plots for each miRNA
(TissueEnrich)
pTGC
TE.miRNAs_75pc_pTGC <- runTEonList(myTargetList = mirs_up_pTGC)
plotBubbleTE(merged_info = TE.miRNAs_75pc_pTGC)
#> Warning: Removed 271 rows containing missing values (`geom_point()`).TE results for each miRNA, upregulated in pTGC
mTSC
TE.miRNAs_up_mTSC <- runTEonList(myTargetList = mirs_up_mTSC)
plotBubbleTE(merged_info = TE.miRNAs_up_mTSC)
#> Warning: Removed 1697 rows containing missing values (`geom_point()`).TE results for each miRNA, upregulated in mTSC
pTGC & mTSC
TE.miRNAs_mTSC.and.pTGC <- runTEonList(myTargetList = mirs_mTSC_and_pTGC)
plotBubbleTE(merged_info = TE.miRNAs_mTSC.and.pTGC)
#> Warning: Removed 2329 rows containing missing values (`geom_point()`).TE results for each miRNA, both mTSC and pTGC
upper quartile mTSC
TE.miRNAs_75pc_mTSC <- runTEonList(myTargetList = miRNAs_75pc_mTSC)
plotBubbleTE(merged_info = TE.miRNAs_75pc_mTSC)
#> Warning: Removed 2082 rows containing missing values (`geom_point()`).TE results for each miRNA, top quartile mTSC
upper quartile pTGC
TE.miRNAs_75pc_pTGC <- runTEonList(myTargetList = miRNAs_75pc_pTGC)
plotBubbleTE(merged_info = TE.miRNAs_75pc_pTGC)
#> Warning: Removed 2310 rows containing missing values (`geom_point()`).TE results for each miRNA, top quartile pTGC
Save RData
Apart from saving the entire session, we will also genelists as R
objects (rds) for for later.
save.image(file = "results/smallRNAseq_draft.RData")
saveRDS(targetsLists, "results/targetsLists_75pc.rds")
saveRDS(brainGeneLists, "results/brainGeneLists.rds")MultiQC report:
MultiQC report is available at this link
Session Information
sessionInfo()
#> R version 4.2.2 (2022-10-31)
#> Platform: x86_64-pc-linux-gnu (64-bit)
#> Running under: Ubuntu 22.04.1 LTS
#>
#> Matrix products: default
#> BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
#> LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so
#>
#> locale:
#> [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
#> [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
#> [5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
#> [7] LC_PAPER=en_US.UTF-8 LC_NAME=C
#> [9] LC_ADDRESS=C LC_TELEPHONE=C
#> [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
#>
#> attached base packages:
#> [1] grid stats4 stats graphics grDevices utils datasets
#> [8] methods base
#>
#> other attached packages:
#> [1] TissueEnrich_1.18.0 GSEABase_1.60.0
#> [3] graph_1.76.0 annotate_1.76.0
#> [5] XML_3.99-0.12 AnnotationDbi_1.60.0
#> [7] ensurer_1.1 ggvenn_0.1.10
#> [9] enrichR_3.1 splitstackshape_1.4.8
#> [11] ComplexUpset_1.3.3 PupillometryR_0.0.4
#> [13] rlang_1.1.1 reshape2_1.4.4
#> [15] biomaRt_2.54.1 ggrepel_0.9.3
#> [17] genefilter_1.80.3 pheatmap_1.0.12
#> [19] RColorBrewer_1.1-3 DESeq2_1.38.3
#> [21] SummarizedExperiment_1.28.0 Biobase_2.58.0
#> [23] MatrixGenerics_1.10.0 matrixStats_0.63.0
#> [25] GenomicRanges_1.50.1 GenomeInfoDb_1.34.3
#> [27] IRanges_2.32.0 S4Vectors_0.36.0
#> [29] BiocGenerics_0.44.0 plotly_4.10.1
#> [31] forcats_0.5.2 stringr_1.5.0
#> [33] dplyr_1.0.10 purrr_1.0.1
#> [35] readr_2.1.3 tidyr_1.3.0
#> [37] tibble_3.1.8 ggplot2_3.4.0
#> [39] tidyverse_1.3.2 scales_1.2.1
#> [41] knitr_1.41
#>
#> loaded via a namespace (and not attached):
#> [1] readxl_1.4.1 backports_1.4.1 BiocFileCache_2.6.1
#> [4] plyr_1.8.8 lazyeval_0.2.2 splines_4.2.2
#> [7] BiocParallel_1.32.1 digest_0.6.30 htmltools_0.5.3
#> [10] fansi_1.0.3 magrittr_2.0.3 memoise_2.0.1
#> [13] googlesheets4_1.0.1 tzdb_0.3.0 Biostrings_2.66.0
#> [16] modelr_0.1.10 vroom_1.6.0 timechange_0.1.1
#> [19] rmdformats_1.0.4 prettyunits_1.1.1 colorspace_2.0-3
#> [22] blob_1.2.3 rvest_1.0.3 rappdirs_0.3.3
#> [25] haven_2.5.1 xfun_0.35 crayon_1.5.2
#> [28] RCurl_1.98-1.9 jsonlite_1.8.3 survival_3.4-0
#> [31] glue_1.6.2 gtable_0.3.1 gargle_1.2.1
#> [34] zlibbioc_1.44.0 XVector_0.38.0 DelayedArray_0.24.0
#> [37] DBI_1.1.3 Rcpp_1.0.9 viridisLite_0.4.1
#> [40] xtable_1.8-4 progress_1.2.2 bit_4.0.5
#> [43] htmlwidgets_1.5.4 httr_1.4.4 ellipsis_0.3.2
#> [46] pkgconfig_2.0.3 farver_2.1.1 sass_0.4.3
#> [49] dbplyr_2.2.1 locfit_1.5-9.7 utf8_1.2.2
#> [52] tidyselect_1.2.0 labeling_0.4.2 munsell_0.5.0
#> [55] cellranger_1.1.0 tools_4.2.2 cachem_1.0.6
#> [58] cli_3.4.1 generics_0.1.3 RSQLite_2.2.18
#> [61] broom_1.0.1 evaluate_0.18 fastmap_1.1.0
#> [64] yaml_2.3.6 bit64_4.0.5 fs_1.5.2
#> [67] KEGGREST_1.38.0 xml2_1.3.3 compiler_4.2.2
#> [70] rstudioapi_0.14 filelock_1.0.2 curl_4.3.3
#> [73] png_0.1-7 reprex_2.0.2 geneplotter_1.76.0
#> [76] bslib_0.4.1 stringi_1.7.8 highr_0.9
#> [79] lattice_0.20-45 Matrix_1.5-3 vctrs_0.6.2
#> [82] pillar_1.8.1 lifecycle_1.0.3 jquerylib_0.1.4
#> [85] data.table_1.14.6 bitops_1.0-7 patchwork_1.1.2
#> [88] R6_2.5.1 bookdown_0.33 codetools_0.2-18
#> [91] assertthat_0.2.1 rjson_0.2.21 withr_2.5.0
#> [94] GenomeInfoDbData_1.2.9 parallel_4.2.2 hms_1.1.2
#> [97] rmarkdown_2.18 googledrive_2.0.0 lubridate_1.9.0